Facilitated by the recent emergence of radio frequency (RF) modeling and simulation tools purposed for adaptive radar processing applications, data-driven approaches to classical problems in radar have rapidly grown in popularity over the past decade. Despite this surge, limited focus has been directed toward the theoretical foundations of these data-driven approaches. In this regard, using adaptive radar processing techniques, we propose a data-driven approach in this work to address the classical problem of radar target localization post adaptive radar detection. To give context to the performance of this data-driven approach, we first analyze the asymptotic breakdown signal-to-clutter-plus-noise ratio (SCNR) threshold of the normalized adaptive matched filter (NAMF) test statistic within the context of radar target localization, and augment this analysis through our proposed deep learning framework for target location estimation. In this procedure, we generate comprehensive datasets by randomly placing targets of variable strengths in predetermined constrained areas using RFView, a site-specific, digital twin, RF modeling and simulation tool. For each radar return from these predefined constrained areas, we generate heatmap tensors in range, azimuth, and elevation of the NAMF test statistic, and of the output power of a generalized sidelobe canceller (GSC). Using our deep learning framework, we estimate target locations from these heatmap tensors to demonstrate the feasibility of and significant improvements provided by our data-driven approach across matched and mismatched settings.


翻译:由于最近出现了用于适应性雷达处理应用的无线电频率模型和模拟工具,最近出现了适应性雷达处理应用的无线电频率模型和模拟工具,因此,过去10年来,对雷达中古老问题采用的数据驱动方法迅速受到欢迎。尽管出现这种激增,但对数据驱动方法的理论基础的关注有限,在这方面,我们建议采用以适应性雷达处理技术为动力的方法,在这项工作中采用以数据驱动的适应性雷达探测后,处理雷达目标本地化的典型问题;为了结合这种数据驱动方法的性能,我们首先分析正常适应性匹配过滤器测试数据标准(SCNR)的无症状分解信号对缓冲加噪音比率(SCNR)阈值阈值,在雷达目标本地化的背景下,通过我们提议的关于目标定位估计的深层学习框架,扩大这一分析。在这个过程中,我们通过随机地将变异优势的目标放在预定的受限地区(RFVVV),一个具体地点、数字式双向、RFS模型和模拟工具。对于从这些预定的受限区域返回的雷达返回,我们从范围中生成供热-供热的调制调制的调制温度,然后从我们从高压的温度数据,利用这些高调制数据,从高调和高调制数据。</s>

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员