Facilitated by the recent emergence of radio frequency (RF) modeling and simulation tools purposed for adaptive radar processing applications, data-driven approaches to classical problems in radar have rapidly grown in popularity over the past decade. Despite this surge, limited focus has been directed toward the theoretical foundations of these data-driven approaches. In this regard, using adaptive radar processing techniques, we propose a data-driven approach in this work to address the classical problem of radar target localization post adaptive radar detection. To give context to the performance of this data-driven approach, we first analyze the asymptotic breakdown signal-to-clutter-plus-noise ratio (SCNR) threshold of the normalized adaptive matched filter (NAMF) test statistic within the context of radar target localization, and augment this analysis through our proposed deep learning framework for target location estimation. In this procedure, we generate comprehensive datasets by randomly placing targets of variable strengths in predetermined constrained areas using RFView, a site-specific, digital twin, RF modeling and simulation tool. For each radar return from these predefined constrained areas, we generate heatmap tensors in range, azimuth, and elevation of the NAMF test statistic, and of the output power of a generalized sidelobe canceller (GSC). Using our deep learning framework, we estimate target locations from these heatmap tensors to demonstrate the feasibility of and significant improvements provided by our data-driven approach across matched and mismatched settings.
翻译:由于最近出现了用于适应性雷达处理应用的无线电频率模型和模拟工具,最近出现了适应性雷达处理应用的无线电频率模型和模拟工具,因此,过去10年来,对雷达中古老问题采用的数据驱动方法迅速受到欢迎。尽管出现这种激增,但对数据驱动方法的理论基础的关注有限,在这方面,我们建议采用以适应性雷达处理技术为动力的方法,在这项工作中采用以数据驱动的适应性雷达探测后,处理雷达目标本地化的典型问题;为了结合这种数据驱动方法的性能,我们首先分析正常适应性匹配过滤器测试数据标准(SCNR)的无症状分解信号对缓冲加噪音比率(SCNR)阈值阈值,在雷达目标本地化的背景下,通过我们提议的关于目标定位估计的深层学习框架,扩大这一分析。在这个过程中,我们通过随机地将变异优势的目标放在预定的受限地区(RFVVV),一个具体地点、数字式双向、RFS模型和模拟工具。对于从这些预定的受限区域返回的雷达返回,我们从范围中生成供热-供热的调制调制的调制温度,然后从我们从高压的温度数据,利用这些高调制数据,从高调和高调制数据。</s>