We propose an approach to solving partial differential equations (PDEs) using a set of neural networks which we call Neural Basis Functions (NBF). This NBF framework is a novel variation of the POD DeepONet operator learning approach where we regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis. These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE. This approach is applied to the steady state Euler equations for high speed flow conditions (mach 10-30) where we consider the 2D flow around a cylinder which develops a shock condition. We then use the NBF predictions as initial conditions to a high fidelity Computational Fluid Dynamics (CFD) solver (CFD++) to show faster convergence. Lessons learned for training and implementing this algorithm will be presented as well.
翻译:我们建议采用一套神经网络来解决部分差异方程式(PDEs),我们称之为神经基础函数(NBF)。这个NBF框架是POD DeepONet操作员学习方法的一个新变异,我们在这个方法中将一组神经网络倒退到一个降序适当正正正正正分解(POD)的基础上。这些网络随后与一个分支网络结合使用,该分支网络将规定的PDE的参数纳入计算向PDE的降序近似值。这个方法将应用于稳定状态的Euler方程式,以适应高速流量条件(mach 10-30),我们在这里我们考虑2D流围绕一个形成冲击状态的圆柱体。然后我们用NBFF的预测作为高正弦性调调调调调调(CFD++)的初始条件,以显示更快的趋同。为培训和实施这一算法而吸取的经验教训也将被提出。