This paper introduces a novel residual correlation analysis, called AZ-analysis, to assess the optimality of spatio-temporal predictive models. The proposed AZ-analysis constitutes a valuable asset for discovering and highlighting those space-time regions where the model can be improved with respect to performance. The AZ-analysis operates under very mild assumptions and is based on a spatio-temporal graph that encodes serial and functional dependencies in the data; asymptotically distribution-free summary statistics identify existing residual correlation in space and time regions, hence localizing time frames and/or communities of sensors, where the predictor can be improved.
翻译:本文介绍一种新的残余相关分析,称为AZ-分析,以评估时空空间预测模型的最佳性。拟议的AZ-分析是发现和突出模型在性能方面可以改进的空间时区的宝贵资产。AZ-分析在非常温和的假设下运作,以空间时空图为基础,该图将数据的序列和功能依赖性编码;无时空分布式简要统计确定空间和时区现有的剩余关联性,从而将时间框架和/或传感器群落本地化,从而可以改进预测器。