A large number of scientific studies and engineering problems involve high-dimensional spatiotemporal data with complicated relationships. In this paper, we focus on a type of space-time interaction named \emph{temporal evolution of spatial dependence (TESD)}, which is a zero time-lag spatiotemporal covariance. For this purpose, we propose a novel Bayesian nonparametric method based on non-stationary spatiotemporal Gaussian process (STGP). The classic STGP has a covariance kernel separable in space and time, failed to characterize TESD. More recent works on non-separable STGP treat location and time together as a joint variable, which is unnecessarily inefficient. We generalize STGP (gSTGP) to introduce the time-dependence to the spatial kernel by varying its eigenvalues over time in the Mercer's representation. The resulting non-separable non-stationary covariance model bares a quasi Kronecker sum structure. Finally, a hierarchical Bayesian model for the joint covariance is proposed to allow for full flexibility in learning TESD. A simulation study and a longitudinal neuroimaging analysis on Alzheimer's patients demonstrate that the proposed methodology is (statistically) effective and (computationally) efficient in characterizing TESD. Theoretic properties of gSTGP including posterior contraction (for covariance) are also studied.
翻译:大量科学研究和工程问题涉及具有复杂关系的高度空间时空数据。 在本文中, 我们侧重于一种名为 empph{ 空间依赖(TESD) 的时空互动, 这是一种零时间拉低的时空瞬时共变。 为此, 我们基于非静止时空工序进程, 提出了一个新型的巴伊西亚非参数性非参数性方法(STGP )。 经典STGP在空间和时间上有一个共性的内核内核内核分解, 无法给TESD定性。 最近关于不可分离的STGP治疗位置和时间一起作为联合变量的更多工作, 效率不必要地低。 我们普遍采用STGP(GP) 来引入空间内核内核的时间依赖性, 在Mercer的代表中, 随着时间的推移, 改变其隐性值。 由此产生的非分离性内核内核内核内核内核内存模式, 是一个准的 Kronecker 和时间结构。 最后, 联合可分离的Bayesian模型是联合可分离性常变的基模型, 作为联合可变性病人的共变数性变量性变量,, 也提议了一种全面性分析方法,, 。