To date, the analysis of high-dimensional, computationally expensive engineering models remains a difficult challenge in risk and reliability engineering. We use a combination of dimensionality reduction and surrogate modelling termed partial least squares-driven polynomial chaos expansion (PLS-PCE) to render such problems feasible. Standalone surrogate models typically perform poorly for reliability analysis. Therefore, in a previous work, we have used PLS-PCEs to reconstruct the intermediate densities of a sequential importance sampling approach to reliability analysis. Here, we extend this approach with an active learning procedure that allows for improved error control at each importance sampling level. To this end, we formulate an estimate of the combined estimation error for both the subspace identified in the dimension reduction step and surrogate model constructed therein. With this, it is possible to adapt the design of experiments so as to optimally learn the subspace representation and the surrogate model constructed therein. The approach is gradient-free and thus can be directly applied to black box-type models. We demonstrate the performance of this approach with a series of low- (2 dimensions) to high- (869 dimensions) dimensional example problems featuring a number of well-known caveats for reliability methods besides high dimensions and expensive computational models: strongly nonlinear limit-state functions, multiple relevant failure regions and small probabilities of failure.


翻译:迄今为止,对高维、计算成本昂贵的工程模型的分析仍然是风险和可靠性工程方面的一项艰巨挑战。我们使用维度减少和代用模型的结合,称为部分平方驱动的多元混乱扩大(PLS-PCE),使这些问题成为可行。独立代用模型通常对可靠性分析效果不佳。因此,在以往的一项工作中,我们使用PLS-PCE来重建连续重要取样方法的中间密度,以进行可靠性分析。在这里,我们扩展这一方法,采用积极的学习程序,改进每个重要取样级别的误差控制。为此,我们为在尺寸减少步骤和代用模型中查明的子空间(PLS-PCE)和代用模型中查明的子空间(PLS-PCE)的综合估计误差,这样可以调整实验的设计,以便最佳地学习子空间代表及其所构造的代用代用模型。这个方法没有梯度,因此可以直接应用于黑箱型模型。我们展示了这一方法的性能,即一系列低度(2维)到高度取样层(869维),用以估计误差度的多维度模型;高度模型的可靠度,高度模型是高度,高度模型,高度模型的不为甚度,高度模型。高度,高度,高度模型为甚度模型为甚低度,高度,高度,高度模型为甚低度。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
GeomCA: Geometric Evaluation of Data Representations
Arxiv
11+阅读 · 2021年5月26日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员