Simulations of high energy density physics are expensive in terms of computational resources. In particular, the computation of opacities of plasmas, which are needed to accurately compute radiation transport in the non-local thermal equilibrium (NLTE) regime, are expensive to the point of easily requiring multiple times the sum-total compute time of all other components of the simulation. As such, there is great interest in finding ways to accelerate NLTE computations. Previous work has demonstrated that a combination of fully-connected autoencoders and a deep jointly-informed neural network (DJINN) can successfully replace the standard NLTE calculations for the opacity of krypton. This work expands this idea to multiple elements in demonstrating that individual surrogate models can be also be generated for other elements with the focus being on creating autoencoders that can accurately encode and decode the absorptivity and emissivity spectra. Furthermore, this work shows that multiple elements across a large range of atomic numbers can be combined into a single autoencoder when using a convolutional autoencoder while maintaining accuracy that is comparable to individual fully-connected autoencoders. Lastly, it is demonstrated that DJINN can effectively learn the latent space of a convolutional autoencoder that can encode multiple elements allowing the combination to effectively function as a surrogate model.
翻译:高能量密度物理模拟在计算资源方面成本高昂。 特别是, 精确计算非本地热平衡( NLTE) 系统中辐射传输所需的等离子体的精确度计算方法非常昂贵, 从而很容易地要求模拟所有其他部件的总和计算时间的倍数。 因此, 人们非常希望找到加速 NLTE 计算的方法。 先前的工作表明, 完全连接的自动计算器和深度联合知情的神经网络( DJINN) 的组合可以成功地取代对 krypton 的不透明性进行标准的 NLTE 计算。 这项工作将这个概念扩大到多个要素, 以证明单个代金模型也可以生成到其他元素的倍数, 重点是创建自动编码器, 可以准确编码和解码吸收和传球光光光光光谱。 此外, 这项工作表明, 大量原子数字的多个元素可以合并成一个单一的自动计算器( DJINT), 同时保持一个可有效测量的精确度, 从而能够有效地将一个与单个的磁源化的磁化元化元化组合, 。