Person re-identification (re-ID) has received great success with the supervised learning methods. However, the task of unsupervised cross-domain re-ID is still challenging. In this paper, we propose a Hard Samples Rectification (HSR) learning scheme which resolves the weakness of original clustering-based methods being vulnerable to the hard positive and negative samples in the target unlabelled dataset. Our HSR contains two parts, an inter-camera mining method that helps recognize a person under different views (hard positive) and a part-based homogeneity technique that makes the model discriminate different persons but with similar appearance (hard negative). By rectifying those two hard cases, the re-ID model can learn effectively and achieve promising results on two large-scale benchmarks.


翻译:个人再识别(Re-ID)在有监督的学习方法方面取得了巨大成功,然而,无人监督的跨领域再识别任务仍具有挑战性。在本文中,我们建议采用硬样本校正(HSR)学习计划,解决原始集群方法的弱点,因为原始集群方法容易在目标未贴标签数据集中出现硬正负样本。 我们的HSR包含两部分,即有助于识别不同观点(硬正)下的人和半成份同质技术,使模型歧视不同的人,但外观相似(硬负 ) 。 通过纠正这两个困难案例,再识别模型可以在两个大规模基准上有效学习并取得可喜的成果。

0
下载
关闭预览

相关内容

【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员