We present ApproxConv, a novel method for compressing the layers of a convolutional neural network. Reframing conventional discrete convolution as continuous convolution of parametrised functions over space, we use functional approximations to capture the essential structures of CNN filters with fewer parameters than conventional operations. Our method is able to reduce the size of trained CNN layers requiring only a small amount of fine-tuning. We show that our method is able to compress existing deep network models by half whilst losing only 1.86% accuracy. Further, we demonstrate that our method is compatible with other compression methods like quantisation allowing for further reductions in model size.
翻译:我们提出Approx Conv, 这是压缩进化神经网络层的新方法。 将常规的离散变异作为空间功能的连续演变, 我们使用功能近似值捕捉有线电视新闻网过滤器的基本结构, 其参数比常规操作要少。 我们的方法可以缩小经过训练的有线电视新闻网层的规模, 只需要微小的微调。 我们显示我们的方法能够将现有的深网络模型压缩一半, 却只失去1.86%的精确度。 此外, 我们证明我们的方法与其他压缩方法相容, 比如量化, 可以进一步缩小模型规模。