Near real time change detection is important for a variety of Earth monitoring applications and remains a high priority for remote sensing science. Data sparsity, subtle changes, seasonal trends, and the presence of outliers make detecting actual landscape changes challenging. \cite{Adams2007} introduced Bayesian Online Changepoint Detection (BOCPD), a computationally efficient, exact Bayesian method for change detection. Incorporation of prior information allows for relaxed dependence on dense data and an extensive stable period, making this method applicable to relatively short time series and multiple changepoint detection. In this paper we conduct BOCPD with a multivariate linear regression framework that supports seasonal trends. We introduce a mechanism to make BOCPD robust against occasional outliers without compromising the computational efficiency of an exact posterior change distribution nor the detection latency. We show via simulations that the method effectively detects change in the presence of outliers. The method is then applied to monitor deforestation in Myanmar where we show superior performance compared to current online changepoint detection methods.
翻译:近实时变化探测对于各种地球监测应用十分重要,并且仍然是遥感科学的一个高度优先事项。数据宽度、微妙变化、季节性趋势以及外部值的存在使得探测实际地貌变化具有挑战性。\cite{Adams2007}引入了巴伊西亚在线变化点探测(Baysian Online Change Point ),这是一种计算高效、精确的贝叶斯变化探测方法。纳入先前的信息可以放松对密集数据的依赖,并有一个广泛的稳定时期,使这种方法适用于较短的时间序列和多个变化点探测。在本文中,我们用一个支持季节趋势的多变线性线性回归框架来进行BOCCD。我们引入了一种机制,使BOPCD对偶然的外部值进行强势,同时不损害精确的后方变化分布和探测拉长的计算效率。我们通过模拟表明,这种方法能够有效检测外部值存在的变化。然后,该方法被用于监测缅甸的毁林情况,与当前的在线变化点探测方法相比,我们表现优于。