In this work, we adapt the {\em micro-macro} methodology to stochastic differential equations for the purpose of numerically solving oscillatory evolution equations. The models we consider are addressed in a wide spectrum of regimes where oscillations may be slow or fast. We show that through an ad-hoc transformation (the micro-macro decomposition), it is possible to retain the usual orders of convergence of Euler-Maruyama method, that is to say, uniform weak order one and uniform strong order one half. We also show that the same orders of uniform accuracy can be achieved by a simple integral scheme. The advantage of the micro-macro scheme is that, in contrast to the integral scheme, it can be generalized to higher order methods.
翻译:在这项工作中,我们调整了“em micro-macro”方法,以适应用于数字解算动进化方程式的随机差异方程式。我们所考虑的模型在一系列不同的制度下处理,在这种制度下,振荡速度可能缓慢或快。我们表明,通过临时变形(微-macro分解),可以保留Euler-Maruyama方法通常的趋同顺序,也就是说,统一弱点一和统一强点二分之一。我们还表明,相同的统一精确顺序可以通过一个简单的整体计划来实现。微-macro方案的优点是,与整体计划相比,它可以被普遍化为更高的顺序方法。