To solve inverse problems, plug-and-play (PnP) methods have been developed that replace the proximal step in a convex optimization algorithm with a call to an application-specific denoiser, often implemented using a deep neural network (DNN). Although such methods have been successful, they can be improved. For example, denoisers are usually designed/trained to remove white Gaussian noise, but the denoiser input error in PnP algorithms is usually far from white or Gaussian. Approximate message passing (AMP) methods provide white and Gaussian denoiser input error, but only when the forward operator is a large random matrix. In this work, for Fourier-based forward operators, we propose a PnP algorithm based on generalized expectation-consistent (GEC) approximation -- a close cousin of AMP -- that offers predictable error statistics at each iteration, as well as a new DNN denoiser that leverages those statistics. We apply our approach to magnetic resonance imaging (MRI) image recovery and demonstrate its advantages over existing PnP and AMP methods.
翻译:为解决反向问题,已经开发了插件和游戏(PnP)方法,取代了Convex优化算法中最接近的一步,用一个专门应用程序的解密器来代替,通常使用深神经网络(DNN)来实施。虽然这种方法是成功的,但可以加以改进。例如,denoisers通常是设计/训练用来消除白高斯噪音的,但PnP算法中的脱noiser输入错误通常远离白色或高斯。传递消息(AMP)方法提供了白色和高斯德挪斯输入错误,但只有当前方操作器是一个巨大的随机矩阵时,我们才提出基于普遍期望一致近似(GEC)的 PnP 算法,这是AMP的近亲表层,它提供每次循环的可预测的错误统计数据,以及利用这些数据的新的DNN denoiser法。我们应用了磁共振成像(MRI)图像的恢复方法,并展示了它相对于现有 PnP和AMP 方法的优势。