In this paper, we focus on multiple sampling problems for the estimation of the fractional Brownian motion when the maximum number of samples is limited, extending existing results in the literature in a non-Markovian framework. Two classes of sampling schemes are proposed: a deterministic scheme and a level-triggered scheme. For the deterministic sampling scheme, the sampling times are selected beforehand and do not depend on the process trajectory. For the level-triggered sampling scheme, the sampling times are the times when the process crosses predetermined thresholds. The sampling times are selected sequentially in time and depend on the process trajectory. For each of the schemes, we derive the optimal sampling times by minimizing the aggregate squared error distortion. We then show that the optimal sampling strategies heavily depend on the dependence structure of the process.
翻译:在本文中,我们针对分数布朗运动估计的多个采样问题进行研究。当采样的最大数量受限时,我们扩展了现有文献中的非马尔科维兹框架。我们提出了两类采样方案:确定性采样方案和水平触发采样方案。对于确定性采样方案,采样时间是预先选择的,不依赖于过程轨迹。对于水平触发采样方案,采样时间是过程穿过预定阈值的时间。采样时间按时间顺序依次选择,并依赖于过程轨迹。对于每种方案,我们通过最小化总体平方误差失真来导出最优采样时间。然后,我们证明最优采样策略严重依赖于过程的相关结构。