This paper presents a key recovery attack on the cryptosystem proposed by Lau and Tan in a talk at ACISP 2018. The Lau-Tan cryptosystem uses Gabidulin codes as the underlying decodable code. To hide the algebraic structure of Gabidulin codes, the authors chose a matrix of column rank $n$ to mix with a generator matrix of the secret Gabidulin code. The other part of the public key, however, reveals crucial information about the private key. Our analysis shows that the problem of recovering the private key can be reduced to solving a multivariate linear system, rather than solving a multivariate quadratic system as claimed by the authors. Apparently, this attack costs polynomial time, and therefore completely breaks the cryptosystem.
翻译:本文介绍了刘先生和陈先生在ACISP 2018年的一次谈话中提议的对加密系统的关键恢复攻击。劳丹先生的加密系统使用加比杜林代码作为基本的代谢代码。为了隐藏加比杜林代码的代数结构,作者选择了一个一列的矩阵,列的等级为美元,以便与秘密加比杜林代码的生成器矩阵混合。然而,公用钥匙的另一部分揭示了关于私人钥匙的关键信息。我们的分析表明,收回私人钥匙的问题可以简化为解决多变量线性系统,而不是解决作者所称的多变量二次曲线系统。很显然,这种攻击需要多元时间,因此完全打破了密码系统。