Many augmented reality (AR) applications rely on omnidirectional environment lighting to render photorealistic virtual objects. When the virtual objects consist of reflective materials, such as a metallic sphere, the required lighting information to render such objects can consist of privacy-sensitive information that is outside the current camera view. In this paper, we show, for the first time, that accuracy-driven multi-view environment lighting can reveal out-of-camera scene information and compromise privacy. We present a simple yet effective privacy attack that extracts sensitive scene information such as human face and text information from the rendered objects, under a number of application scenarios. To defend against such attacks, we develop a novel $IPC^{2}S$ defense and a conditional $R^2$ defense. Our $IPC^{2}S$ defense, used in conjunction with a generic lighting reconstruction method, preserves the scene geometry while obfuscating the privacy-sensitive information. As a proof-of-concept, we leverage existing OCR and face detection models to identify text and human faces from past camera observations and blur the color pixels associated with detected regions. We evaluate the visual quality impact of our defense by comparing rendered virtual objects to ones rendered with a generic multi-lighting reconstruction technique, ARKit, and $R^2$ defense. Our visual and quantitative results demonstrate that our defense leads to structurally similar reflections with up to 0.98 SSIM score across a variety of rendering scenarios while preserving sensitive information by reducing the automatic extraction success rate to at most 8.8%.
翻译:许多扩大的现实(AR) 应用程序依赖于全向环境照明, 以光化现实虚拟物体。 当虚拟物体由金属球等反射材料组成时, 制造这些物体所需要的照明信息可以包括目前摄像器视图之外的隐私敏感信息。 在本文中, 我们第一次显示, 精确驱动的多视图环境照明可以揭示镜头外的现场信息, 并损害隐私。 我们展示了简单而有效的隐私攻击, 在一系列应用情景下, 提取敏感现场信息, 如人类面貌和从被造对象的文本信息。 为了防范这类攻击, 我们开发了一个新的 $IPC2}S$的防御和条件值$R2$的防御。 我们的$IPC2}S$9的防御, 与通用照明重建方法一起使用, 保存现场的地理测量,同时模糊隐私敏感信息。 作为证据的反射场, 我们利用现有的 OCRR 和面对的探测模型来识别过去摄像观察的文字和人面, 并模糊与被检测到的色素相关目标的颜色。 我们用虚拟智能比了我们的图像质量效果, 将我们的图像比了我们的图像质量效果比了我们的防御比 。