In this work, we propose a novel method for the detailed reconstruction of transparent objects by exploiting polarimetric cues. Most of the existing methods usually lack sufficient constraints and suffer from the over-smooth problem. Hence, we introduce polarization information as a complementary cue. We implicitly represent the object's geometry as a neural network, while the polarization render is capable of rendering the object's polarization images from the given shape and illumination configuration. Direct comparison of the rendered polarization images to the real-world captured images will have additional errors due to the transmission in the transparent object. To address this issue, the concept of reflection percentage which represents the proportion of the reflection component is introduced. The reflection percentage is calculated by a ray tracer and then used for weighting the polarization loss. We build a polarization dataset for multi-view transparent shapes reconstruction to verify our method. The experimental results show that our method is capable of recovering detailed shapes and improving the reconstruction quality of transparent objects. Our dataset and code will be publicly available at https://github.com/shaomq2187/TransPIR.
翻译:在这项工作中,我们提出一种新颖的方法,通过利用对极线线来详细重建透明物体。大多数现有方法通常缺乏足够的限制,并受到过度悬浮问题的影响。因此,我们引入了极化信息作为补充提示。我们隐含地将物体的几何作为神经网络,而两极化则能够从给定形状和光化配置中将物体的极化图象转换成两极化图象。将极化图象与真实世界所捕捉的图象进行直接比较,将因在透明对象中的传输而出现更多的错误。为了解决这一问题,将引入反映反射部分比例的概念。反射百分比由射线追踪器计算,然后用于对极化损失进行加权。我们为多视角透明形状的重建建立一个极化数据集,以核实我们的方法。实验结果显示,我们的方法能够恢复详细的形状并改进透明物体的重建质量。我们的数据集和代码将在https://github.com/shaomq2187/Transprir上公开提供。