The famous scientist Hermann von Helmholtz was born 200 years ago. Many complex physical wave phenomena in engineering can effectively be described using one or a set of equations named after him: the Helmholtz equation. Although this has been known for a long time from a theoretical point of view, the actual numerical implementation has often been hindered by divergence free and/or curl free constraints. There is further a need for a numerical method which is accurate, reliable and takes into account radiation conditions at infinity. The classical boundary element method (BEM) satisfies the last condition, yet one has to deal with singularities in the implementation. Since these singularities are mathematical in origin, they can actually be removed without losing accuracy by subtracting a carefully chosen theoretical solution with the same singular behavior. We review here how a recently developed singularity-free 3D boundary element framework with superior accuracy can be used to tackle such problems only using one or more Helmholtz equations with higher order (quadratic) elements which can tackle complex shapes. Examples are given for acoustics (a Helmholtz resonator among others) and electromagnetic scattering. We briefly touch on the Helmholtz decomposition for dynamic elastic waves as well.


翻译:著名的科学家Hermann von Helmholtz 诞生于200年前。 工程中许多复杂的物理波现象可以用以他命名的一套或一组方程式来有效描述: Helmholtz 方程式。 虽然从理论角度已经知道这个方程式。 虽然从一个理论角度长期知道这一点, 但实际的数值执行经常受到差异自由和(或)曲线自由限制的阻碍。 还需要一种精确、 可靠和考虑到无限度辐射条件的数字方法。 经典边界元素方法( BEM)满足了最后一个条件, 但必须处理执行过程中的奇点。 由于这些奇点起源是数学的, 因此它们实际上可以在不失去准确性的情况下被去除, 以同样的奇点行为去掉一个精心选择的理论解决方案。 我们在这里审查最近开发的无奇点 3D 边界元素框架是如何用一个精度较高的单点来解决这些问题的。 只有使用一个或一个以上的具有更高顺序( 夸度) 的赫姆尔茨 方程式才能解决复杂形状的辐射条件。 典型边界元素方法( BEMM) 方法(BEM) 满足了最后一个条件,, 但必须处理执行过程中的奇异点的奇特。 。 这些奇调是用于感应感波状变的, 。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员