In this letter we compare the behaviour of standard Virtual Element Methods (VEM) and stabilization free Enlarged Enhancement Virtual Element Methods (E$^2$VEM) with the focus on some elliptic test problems whose solution and diffusivity tensor are characterized by anisotropies. Results show that the possibility to avoid an arbitrary stabilizing part, offered by E$^2$VEM methods, can reduce the magnitude of the error on general polygonal meshes and help convergence.
翻译:在这封信中,我们比较了标准虚拟元素方法(VEM)和稳定扩大免费增强虚拟元素方法(E$2$VEM)的行为,并把重点放在一些外省试验问题上,这些问题的解决方案和差异性强项的特征是无脊椎动物,结果显示,E$2$VEM方法提供的避免任意稳定部分的可能性可以减少一般多边网球的错误程度,并有助于趋同。