Shape completion is the problem of completing partial input shapes such as partial scans. This problem finds important applications in computer vision and robotics due to issues such as occlusion or sparsity in real-world data. However, most of the existing research related to shape completion has been focused on completing shapes by learning a one-to-one mapping which limits the diversity and creativity of the produced results. We propose a novel multimodal shape completion technique that is effectively able to learn a one-to-many mapping and generates diverse complete shapes. Our approach is based on the conditional Implicit MaximumLikelihood Estimation (IMLE) technique wherein we condition our inputs on partial 3D point clouds. We extensively evaluate our approach by comparing it to various baselines both quantitatively and qualitatively. We show that our method is superior to alternatives in terms of completeness and diversity of shapes
翻译:形状完成是完成部分输入形状(如部分扫描)的问题。 这个问题在计算机视觉和机器人中发现重要的应用, 原因是现实世界数据中的隔离或宽度等问题。 然而, 与形状完成有关的现有研究大多侧重于通过学习一对一的绘图来完成形状,这限制了所产生结果的多样性和创造性。 我们提出了一种新的多式联运形状完成技术,能够有效地学习一对一的绘图,并产生不同的完整形状。 我们的方法基于有条件的隐性最大资产模拟(IMLE)技术,我们把我们的投入以部分3D点云作为条件。 我们广泛评估了我们的方法,将其与各种基线进行定量和定性比较。 我们表明,我们的方法在完整性和形状多样性方面优于替代方法。