Existing methods for spectral reconstruction usually learn a discrete mapping from RGB images to a number of spectral bands. However, this modeling strategy ignores the continuous nature of spectral signature. In this paper, we propose Neural Spectral Reconstruction (NeSR) to lift this limitation, by introducing a novel continuous spectral representation. To this end, we embrace the concept of implicit function and implement a parameterized embodiment with a neural network. Specifically, we first adopt a backbone network to extract spatial features of RGB inputs. Based on it, we devise Spectral Profile Interpolation (SPI) module and Neural Attention Mapping (NAM) module to enrich deep features, where the spatial-spectral correlation is involved for a better representation. Then, we view the number of sampled spectral bands as the coordinate of continuous implicit function, so as to learn the projection from deep features to spectral intensities. Extensive experiments demonstrate the distinct advantage of NeSR in reconstruction accuracy over baseline methods. Moreover, NeSR extends the flexibility of spectral reconstruction by enabling an arbitrary number of spectral bands as the target output.
翻译:光谱重建的现有方法通常从 RGB 图像到若干光谱带的离散绘图方法。 但是,这种示范战略忽略了光谱特征的连续性。 在本文中,我们提议通过引入新的连续光谱表达方式来取消这一限制。 为此,我们接受隐含功能的概念,并采用神经网络的参数化体现。具体地说,我们首先采用一个主干网络来提取RGB 输入的空间特征。在此基础上,我们设计了光谱剖析(SPI)模块和神经注意映射模块,以丰富深度特征,其中涉及空间-光谱相关性,以更好地体现这些特征。然后,我们把抽样光谱波段的数量视为连续隐含功能的协调,以便从深度特征到光谱强度的预测中学习。广泛的实验表明NESR在重建精确度方面比基线方法有明显优势。此外,NESR通过将光谱波段的任意数量作为目标输出,扩大了光谱重建的灵活性。