Correspondences estimation or feature matching is a key step in the image-based 3D reconstruction problem. In this paper, we propose two algebraic properties for correspondences. The first is a rank deficient matrix construct from the correspondences of at least nine key-points on two images (two-view correspondences) and the second is also another rank deficient matrix built from the other correspondences of six key-points on at least five images (multi-view correspondences). To our knowledge, there are no theoretical results for multi-view correspondences prior to this paper. To obtain accurate correspondences, multi-view correspondences seem to be more useful than two-view correspondences. From these two algebraic properties, we propose an refinement algorithm for correspondences. This algorithm is a combination of correspondences refinement, outliers recognition and missing key-points recovery. Real experiments from the project of reconstructing Buddha statue show that the proposed refinement algorithm can reduce the average error from 77 pixels to 55 pixels on the correspondences estimation. This drop is substantial and it validates our results.
翻译:通信估计或特征匹配是基于图像的 3D 重建问题的关键步骤 。 在本文中, 我们为信件建议了两个代数属性。 首先是从两张图像( 两视图通信)上至少九个关键点的通信( 双视图通信) 中, 至少九个关键点的排名不足矩阵结构, 其次是从至少五张图像( 多视图通信)上其他六个关键点的通信( 多个视图通信) 中建立的另一个排名不足矩阵。 据我们所知, 在本文之前的多视图通信没有理论结果 。 为了获得准确的通信, 多视图通信似乎比两眼通信更有用 。 在这两张代关键点属性中, 我们建议了通信的精细算法。 这种算法是通信的精细、 外部识别和缺失关键点恢复的组合。 重建佛像项目的真正实验显示, 拟议的精细算算法可以将信件估计的平均错误从77 像素减少到55 像素。 这一下降是实质性的, 它验证了我们的结果 。