We explore the applicability of splitting methods involving complex coefficients to solve numerically the time-dependent Schr\"odinger equation. We prove that a particular class of integrators are conjugate to unitary methods for sufficiently small step sizes when applied to problems defined in the group $\mathrm{SU}(2)$. In the general case, the error in both the energy and the norm of the numerical approximation provided by these methods does not possess a secular component over long time intervals, when combined with pseudo-spectral discretization techniques in space.
翻译:我们探讨采用涉及复杂系数的分拆方法,从数字上解决基于时间的 Schr\'odinger 等式。我们证明,当应用到在$\mathrm{SU}(2)美元组中界定的问题时,某类特定集成者是使用单一方法来计算足够小的阶梯大小。在一般情况下,这些方法所提供的能量和数字近似规范的错误,如果与空间的伪光谱分解技术相结合,则不具有长期的世俗成分。