We study streaming algorithms for two fundamental geometric problems: computing the cost of a Minimum Spanning Tree (MST) of an $n$-point set $X \subset \{1,2,\dots,\Delta\}^d$, and computing the Earth Mover Distance (EMD) between two multi-sets $A,B \subset \{1,2,\dots,\Delta\}^d$ of size $n$. We consider the turnstile model, where points can be added and removed. We give a one-pass streaming algorithm for MST and a two-pass streaming algorithm for EMD, both achieving an approximation factor of $\tilde{O}(\log n)$ and using polylog$(n,d,\Delta)$-space only. Furthermore, our algorithm for EMD can be compressed to a single pass with a small additive error. Previously, the best known sublinear-space streaming algorithms for either problem achieved an approximation of $O(\min\{ \log n , \log (\Delta d)\} \log n)$ [Andoni-Indyk-Krauthgamer '08, Backurs-Dong-Indyk-Razenshteyn-Wagner '20]. For MST, we also prove that any constant space streaming algorithm can only achieve an approximation of $\Omega(\log n)$, analogous to the $\Omega(\log n)$ lower bound for EMD of [Andoni-Indyk-Krauthgamer '08]. Our algorithms are based on an improved analysis of a recursive space partitioning method known generically as the Quadtree. Specifically, we show that the Quadtree achieves an $\tilde{O}(\log n)$ approximation for both EMD and MST, improving on the $O(\min\{ \log n , \log (\Delta d)\} \log n)$ approximation of [Andoni-Indyk-Krauthgamer '08, Backurs-Dong-Indyk-Razenshteyn-Wagner '20].
翻译:我们研究两个基本的 n20 位数问题的流程算法: 计算一个最小的 覆盖树( MST) 的成本, 其值为 $X\ subset #1, 2,\ dots,\ Delta\ d$, 并且计算地球移动距离( EMD) 介于两个多赛$A, B\ subset #1, 2,\ dots,\ Delta ⁇ d$美元。 我们考虑的是旋转线模型, 该模型可以添加和删除点。 我们给 MST 和 EMD的双流算法, 实现 $Oxx 的近似值 。