In this paper, we prove that over finite fields modulo primes, solving general linear systems is as hard as solving unit-weight Laplacian linear systems. We give a reduction of solving a general linear system $\mathbf{A} \boldsymbol{x} = \boldsymbol{b}$ over $\mathbb{Z}_{p}$ to solving a unit-weight Laplacian system $\bar{\mathbf{L}}$ of size $O\left(\mathrm{nnz}(\mathbf{A})\log^2p/\log\log p\right)$. Our result indicates that unlike problems over reals, graph-like structure such as Laplacians may not offer too many additional properties over finite fields. We also formalize the role of Schur complement as a tool for making reductions between problems on systems of linear equations.
翻译:在本文中, 我们证明超过限定字段的 modulo 质素, 解决普通线性系统和解决单位重量的 Laplacian 线性系统一样困难。 我们减少解决普通线性系统$\ mathbf{A}\ boldsymbol{x} =\ boldsymbol{b} =\ b} $\ mathb{p} 超过$\ mathb} 美元, 以解决单位重量的 Laplacian 系统$\bar\ mathb{L} $( matthrm{ nnz} (\ mathb{A})\ log% 2p/\ log\ log p\ right) $。 我们的结果显示, 与真实的问题不同, 像 Laplacians 这样的图形结构在有限字段上可能不会提供太多额外属性 。 我们还正式确定Schur 补充的作用, 作为在线性方程式系统中减少问题的工具 。