Dallard, Milani\v{c}, and \v{S}torgel [arXiv '22] ask if for every class excluding a fixed planar graph $H$ as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when $H$ is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when $H$ is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the $t$-vertex cycle, $C_t$ [Gartland et al., STOC '21] and the disjoint union of $t$ triangles, $tC_3$ [Bonamy et al., SODA '23]. We give, for every integer $t$, a polynomial-time algorithm running in $n^{O(t^5)}$ when $H$ is the friendship graph $K_1 + tK_2$ ($t$ disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in $n^{O(t^2 \log n)+t^{O(1)}}$ when $H$ is $tC_3 \uplus C_4$ (the disjoint union of $t$ triangles and a 4-vertex cycle). The former extends a classical result on graphs excluding $tK_2$ as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.'s result.
翻译:dallard, Milani\ v{c} 和\ v{S} torgel [arXiv'22] 询问,对于不包括固定平面图的每类美元作为诱导的微小,最大独立Set能否在多元时间解析, 并显示当$H是任何平面完整的双叶图, 或5顶点偏差减去一个边缘, 或减去两个脱节边缘时, 肯定的答案将构成对目前状态的深远概括。 当我们目前不知道当$H是7- 垂直路径时, 是否存在一个多盘平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面