In the field of data integration, data quality problems are often encountered when extracting, combining, and merging data. The probabilistic data integration approach represents information about such problems as uncertainties in a probabilistic database. In this paper, we propose a data-cleaning autoencoder capable of near-automatic data quality improvement. It learns the structure and dependencies in the data to identify and correct doubtful values. A theoretical framework is provided, and experiments show that it can remove significant amounts of noise from categorical and numeric probabilistic data. Our method does not require clean data. We do, however, show that manually cleaning a small fraction of the data significantly improves performance.


翻译:在数据整合领域,在提取、合并和合并数据时往往会遇到数据质量问题。概率数据整合方法代表了概率数据库不确定性等问题的信息。在本文件中,我们提出一个能够近自动数据质量改进的数据清理自动编码器。它了解数据的结构和依赖性,以便识别和纠正可疑值。提供了理论框架,实验表明它能够从绝对和数字概率数据中消除大量噪音。我们的方法不需要清洁数据。然而,我们确实表明,人工清理数据中的一小部分能显著改善性能。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员