For the comparison of inequality and welfare in multiple attributes the use of generalized Gini indices is proposed. Individual endowment vectors are summarized by using attribute weights and aggregated in a spectral social evaluation function. Such functions are based on classes of spectral functions, ordered by their aversion to inequality. Given a spectrum and a set $P$ of attribute weights, a multivariate Gini dominance ordering, being uniform in weights, is defined. If the endowment vectors are comonotonic, the dominance is determined by their marginal distributions; if not, the dependence structure of the endowment distribution has to be taken into account. For this, a set-valued representative endowment is introduced that characterizes the welfare of a $d$-dimensioned distribution. It consists of all points above the lower border of a convex compact in $\R^d$, while the set ordering of representative endowments corresponds to uniform Gini dominance. An application is given to the welfare of 28 European countries. Properties of $P$-uniform Gini dominance are derived, including relations to other orderings of $d$-variate distributions such as convex and dependence orderings. The multi-dimensioned representative endowment can be efficiently calculated from data. In a sampling context, it consistently estimates its population version.


翻译:为了比较多种属性的不平等和福利,建议采用通用基尼指数,对个人天赋矢量进行总结,采用属性权重,并汇总在光谱社会评估功能中,这些功能以光谱功能的类别为基础,根据对不平等的反感加以排序。考虑到频谱和一套固定的美元属性权重,界定了多重变式基尼支配地位,其重量一致。如果捐赠矢量具有共聚性,则其支配地位由其边缘分布决定;如果不是,则必须考虑到捐赠分配的依赖性结构。为此,引入了一个定值的代表属性,其特征是美元差异性分布的福利。它包含在连接式契约较低边界以上的所有点,以美元计算,而代表性捐赠的组合顺序则与统一的基尼的主导性相符。向28个欧洲国家提供一种应用软件。美元-统一基尼支配地位的属性由它们的边际分布决定,包括与美元差异性分配的其他排序的关系,如配置值分配,其配置值分布方式是配置型分配方式,并持续估算其代表性数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
0+阅读 · 2022年8月5日
Arxiv
0+阅读 · 2022年8月3日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员