In the realm of e-commerce search, the significance of semantic matching cannot be overstated, as it directly impacts both user experience and company revenue. Query rewriting serves as an important technique to bridge semantic gaps inherent in the semantic matching process. However, existing query rewriting methods often struggle to effectively optimize long-tail queries and alleviate the phenomenon of \textit{``\nothing''} caused by semantic gap. In this paper, we present \textbf{\method}, a comprehensive framework that \textbf{B}ridges the s\textbf{E}mantic gap for long-tail \textbf{QUE}ries. \method comprises three stages: multi-instruction supervised fine tuning (SFT), offline feedback, and objective alignment. Specifically, we first construct a rewriting dataset based on rejection sampling, and mix it with multiple auxiliary tasks data to fine tune our large language model (LLM) in a supervised fashion during the first stage. Subsequently, with the well-trained LLM, we employ beam search to generate multiple candidate rewrites, which would be fed into Taobao offline system to simulate the retrieval process and obtain the partial order. Leveraging the partial order of candidate rewrites, we introduce a contrastive learning method to highlight the distinctions between rewrites and align the model with the Taobao online objectives. Offline experiments prove the effectiveness of our method in enhancing retrieval performance. Online A/B tests reveal that our method can significantly boost gross merchandise volume (GMV), number of transaction (\#Trans) and unique visitor (UV) for long-tail queries. \method has been deployed on Taobao, one of most popular online shopping platforms in China, since October 2023.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员