Object detectors are conventionally trained by a weighted sum of classification and localization losses. Recent studies (e.g., predicting IoU with an auxiliary head, Generalized Focal Loss, Rank & Sort Loss) have shown that forcing these two loss terms to interact with each other in non-conventional ways creates a useful inductive bias and improves performance. Inspired by these works, we focus on the correlation between classification and localization and make two main contributions: (i) We provide an analysis about the effects of correlation between classification and localization tasks in object detectors. We identify why correlation affects the performance of various NMS-based and NMS-free detectors, and we devise measures to evaluate the effect of correlation and use them to analyze common detectors. (ii) Motivated by our observations, e.g., that NMS-free detectors can also benefit from correlation, we propose Correlation Loss, a novel plug-in loss function that improves the performance of various object detectors by directly optimizing correlation coefficients: E.g., Correlation Loss on Sparse R-CNN, an NMS-free method, yields 1.6 AP gain on COCO and 1.8 AP gain on Cityscapes dataset. Our best model on Sparse R-CNN reaches 51.0 AP without test-time augmentation on COCO test-dev, reaching state-of-the-art. Code is available at https://github.com/fehmikahraman/CorrLoss


翻译:最近的研究表明(例如,预测使用辅助头、通用焦点损失、排名和排序损失的IOU),我们制定措施评估相关性的效果,并利用它们分析共同探测器。 (二) 受我们观察的启发,例如,不使用NMS的检测器也可以从相互关系中受益,我们提出关联性损失,这是一个新的插件损失功能,通过直接优化相关系数来改进各种物体检测器的性能:E.例如,在NMS-CNN、NMS-COM-自由方法上,对Sprassion R-CN-RO-ROM-NM-S-S-Sort探测器的性能损失进行校正。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月2日
Arxiv
0+阅读 · 2023年3月1日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员