Novel-view synthesis (NVS) for dynamic scenes from 2D images presents significant challenges due to the spatial complexity and temporal variability of such scenes. Recently, inspired by the remarkable success of NVS using 3D Gaussian Splatting (3DGS), researchers have sought to extend 3D Gaussian models to four dimensions (4D) for dynamic novel-view synthesis. However, methods based on 4D rotation and scaling introduce spatiotemporal deformation into the 4D covariance matrix, necessitating the slicing of 4D Gaussians into 3D Gaussians. This process increases redundant computations as timestamps change-an inherent characteristic of dynamic scene rendering. Additionally, performing calculations on a four-dimensional matrix is computationally intensive. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations, thereby eliminating the reliance on 4D matrix computations. We extend the 3DGS rendering process to 4D, enabling the projection of temporal and spatial deformations into dynamic 2D Gaussians in ray space. Consequently, our method facilitates faster dynamic scene synthesis. Moreover, it reduces storage requirements by at least 4.5\% due to our efficient presentation method. Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352\times1014$ on an RTX 3090 GPU, with experiments across multiple benchmarks demonstrating its competitive performance in both monocular and multi-view scenarios.
翻译:暂无翻译