Maxwell's equations are a system of partial differential equations that govern the laws of electromagnetic induction. We study a mimetic finite-difference (MFD) discretization of the equations which preserves important underlying physical properties. We show that, after mass-lumping and appropriate scaling, the MFD discretization is equivalent to a structure-preserving finite-element (FE) scheme. This allows for a transparent analysis of the MFD method using the FE framework, and provides an avenue for the construction of efficient and robust linear solvers for the discretized system. In particular, block preconditioners designed for FE formulations can be applied to the MFD system in a straightforward fashion. We present numerical tests which verify the accuracy of the MFD scheme and confirm the robustness of the preconditioners.


翻译:马克斯韦尔的方程式是适用于电磁感应法的局部差异方程式系统。我们研究了这些方程式的微微有限差异(MFD)分解(MFD),这保留了重要的内在物理特性。我们表明,在大规模排除和适当缩放后,MFD的分解相当于一个结构保留有限元素(FE)计划。这样就可以利用FE框架对MFD方法进行透明的分析,并为为分解系统建造高效和稳健的线性线性解决器提供一个途径。特别是,为FE配方设计的区块先决条件可以直截了当的方式适用于MFD系统。我们提出了数字测试,以核实MFD计划的准确性,并证实先决条件的健全性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员