We propose a high order numerical homogenization method for dissipative ordinary differential equations (ODEs) containing two time scales. Essentially, only first order homogenized model globally in time can be derived. To achieve a high order method, we have to adopt a numerical approach in the framework of the heterogeneous multiscale method (HMM). By a successively refined microscopic solver, the accuracy improvement up to arbitrary order is attained providing input data smooth enough. Based on the formulation of the high order microscopic solver we derived, an iterative formula to calculate the microscopic solver is then proposed. Using the iterative formula, we develop an implementation to the method in an efficient way for practical applications. Several numerical examples are presented to validate the new models and numerical methods.
翻译:我们建议一种高顺序的普通分解方程式(ODEs)高序数字同质化方法,该方法包含两个时间尺度。 基本上, 只能及时得出全球一级第一顺序的同质模型。 为了实现一个高顺序方法, 我们必须在多元多尺度方法(HMM)的框架内采用数字方法。 通过一个连续完善的微粒求解器, 达到任意顺序的精确度提高, 提供了足够顺畅的输入数据 。 基于我们所生成的高顺序微型分解器的配制, 然后提出了计算微孔解器的迭代公式。 我们利用迭代公式, 以有效的方式开发了该方法的实施方法, 以实际应用 。 提供了几个数字实例, 以验证新的模式和数字方法 。