We propose a high order numerical homogenization method for dissipative ordinary differential equations (ODEs) containing two time scales. Essentially, only first order homogenized model globally in time can be derived. To achieve a high order method, we have to adopt a numerical approach in the framework of the heterogeneous multiscale method (HMM). By a successively refined microscopic solver, the accuracy improvement up to arbitrary order is attained providing input data smooth enough. Based on the formulation of the high order microscopic solver we derived, an iterative formula to calculate the microscopic solver is then proposed. Using the iterative formula, we develop an implementation to the method in an efficient way for practical applications. Several numerical examples are presented to validate the new models and numerical methods.


翻译:我们建议一种高顺序的普通分解方程式(ODEs)高序数字同质化方法,该方法包含两个时间尺度。 基本上, 只能及时得出全球一级第一顺序的同质模型。 为了实现一个高顺序方法, 我们必须在多元多尺度方法(HMM)的框架内采用数字方法。 通过一个连续完善的微粒求解器, 达到任意顺序的精确度提高, 提供了足够顺畅的输入数据 。 基于我们所生成的高顺序微型分解器的配制, 然后提出了计算微孔解器的迭代公式。 我们利用迭代公式, 以有效的方式开发了该方法的实施方法, 以实际应用 。 提供了几个数字实例, 以验证新的模式和数字方法 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员