As gradient-free stochastic optimization gains emerging attention for a wide range of applications recently, the demand for uncertainty quantification of parameters obtained from such approaches arises. In this paper, we investigate the problem of statistical inference for model parameters based on gradient-free stochastic optimization methods that use only function values rather than gradients. We first present central limit theorem results for Polyak-Ruppert-averaging type gradient-free estimators. The asymptotic distribution reflects the trade-off between the rate of convergence and function query complexity. We next construct valid confidence intervals for model parameters through the estimation of the covariance matrix in a fully online fashion. We further give a general gradient-free framework for covariance estimation and analyze the role of function query complexity in the convergence rate of the covariance estimator. This provides a one-pass computationally efficient procedure for simultaneously obtaining an estimator of model parameters and conducting statistical inference. Finally, we provide numerical experiments to verify our theoretical results and illustrate some extensions of our method for various machine learning and deep learning applications.
翻译:随着最近对广泛应用的无梯度随机优化逐渐引起对广泛应用的注意,对从这些方法中获得的参数的不确定性量化需求出现了。在本文件中,我们调查了基于仅使用函数值而不是梯度的无梯度随机优化方法的模型参数的统计推论问题。我们首先对聚氨酯-鲁珀特-挥发性梯度-无梯度估计器的理论结果进行中央限制。无药可及分布反映了趋同率和功能查询复杂性之间的权衡。我们随后通过以完全在线方式估计共变矩阵,为模型参数建立有效的信任间隔。我们进一步为共变数估计提供一个通用的无梯度框架,并分析函数查询的复杂性在共变数估计器的趋同率中的作用。这为同时获取模型参数估计器和进行统计推断提供了一种一次性的计算效率程序。最后,我们提供了数字实验,以核实我们的理论结果,并举例说明我们各种机器学习和深层学习应用方法的一些扩展方法。