As gradient-free stochastic optimization gains emerging attention for a wide range of applications recently, the demand for uncertainty quantification of parameters obtained from such approaches arises. In this paper, we investigate the problem of statistical inference for model parameters based on gradient-free stochastic optimization methods that use only function values rather than gradients. We first present central limit theorem results for Polyak-Ruppert-averaging type gradient-free estimators. The asymptotic distribution reflects the trade-off between the rate of convergence and function query complexity. We next construct valid confidence intervals for model parameters through the estimation of the covariance matrix in a fully online fashion. We further give a general gradient-free framework for covariance estimation and analyze the role of function query complexity in the convergence rate of the covariance estimator. This provides a one-pass computationally efficient procedure for simultaneously obtaining an estimator of model parameters and conducting statistical inference. Finally, we provide numerical experiments to verify our theoretical results and illustrate some extensions of our method for various machine learning and deep learning applications.


翻译:随着最近对广泛应用的无梯度随机优化逐渐引起对广泛应用的注意,对从这些方法中获得的参数的不确定性量化需求出现了。在本文件中,我们调查了基于仅使用函数值而不是梯度的无梯度随机优化方法的模型参数的统计推论问题。我们首先对聚氨酯-鲁珀特-挥发性梯度-无梯度估计器的理论结果进行中央限制。无药可及分布反映了趋同率和功能查询复杂性之间的权衡。我们随后通过以完全在线方式估计共变矩阵,为模型参数建立有效的信任间隔。我们进一步为共变数估计提供一个通用的无梯度框架,并分析函数查询的复杂性在共变数估计器的趋同率中的作用。这为同时获取模型参数估计器和进行统计推断提供了一种一次性的计算效率程序。最后,我们提供了数字实验,以核实我们的理论结果,并举例说明我们各种机器学习和深层学习应用方法的一些扩展方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员