We consider the finite element discretization and the iterative solution of singularly perturbed elliptic reaction-diffusion equations in three-dimensional computational domains. These equations arise from the optimality conditions for elliptic distributed optimal control problems with energy regularization that were recently studied by M.~Neum\"{u}ller and O.~Steinbach (2020). We provide quasi-optimal a priori finite element error estimates which depend both on the mesh size $h$ and on the regularization parameter $\varrho$. The choice $\varrho = h^2$ ensures optimal convergence which only depends on the regularity of the target function. For the iterative solution, we employ an algebraic multigrid preconditioner and a balancing domain decomposition by constraints (BDDC) preconditioner. We numerically study robustness and efficiency of the proposed algebraic preconditioners with respect to the mesh size $h$, the regularization parameter $\varrho$, and the number of subdomains (cores) $p$. Furthermore, we investigate the parallel performance of the BDDC preconditioned conjugate gradient solver.
翻译:我们考虑了三维计算域中奇不相干的椭圆反反射方程式的有限元素离散和迭代溶解。这些方程式产生于M.~Neum\\{u}ller和O~Steinbach(202020年)最近研究的能源正规化的椭圆分布最佳控制问题的最佳条件。我们提供了一种准最佳的先验有限元素误差估计值,既取决于网状大小$h美元,也取决于正规参数$\varrho$。选择$\varrho=h ⁇ 2$确保最佳趋同,而这只取决于目标功能的规律性。对于迭代解决方案,我们使用了一个代代数多格数多格预设器,并平衡了受限(BDDC)先决条件制约的地域分解。我们从数字上研究了拟议的平面要素前提的稳健和效率,规范参数$\varrho$,以及子域域(核心)数($p$),我们调查了BDDDC前置前置模型的平行性能。