We introduce a new representation of the rotating shallow water equations based on a stochastic transport principle. The derivation relies on a decomposition of the fluid flow into a large-scale component and a noise term that models the unresolved small-scale flow. The total energy of such a random model is demonstrated to be preserved along time for any realization. To preserve this structure, we combine an energy (in space) preserving discretization of the underlying deterministic model with approximations of the stochastic terms that are based on standard finite volume/difference operators. This way, our method can directly be used in existing dynamical cores of global numerical weather prediction and climate models. For an inviscid test case on the f-plane we use a homogenous noise and illustrate that the spatial part of the stochastic scheme preserves the total energy of the system. Moreover, using an inhomogenous noise, we show for a barotropically unstable jet on the sphere that the proposed random model better captures the structure of a large-scale flow than a comparable deterministic model.


翻译:我们引入了基于随机迁移原则的旋转浅水方程式的新代表。 衍生方法依赖于流体分解成一个大型组件, 以及一个用于模拟尚未解决的小规模流体的噪音术语。 这种随机模型的总能量在任何实现过程中都会被证明是同时保存的。 为了保护这一结构, 我们将一种能量( 在空间) 保存基本确定性模型的离散性与基于标准有限量/差异操作员的随机性术语近似值结合起来。 这样, 我们的方法可以直接用于现有全球数字天气预测和气候模型的动态核心。 对于关于浮地的不留视测试案例, 我们使用一种同质噪音, 并表明这种随机性模型的空间部分保存了系统的总能量。 此外, 我们使用一种无色的噪音, 展示了一种无色性不稳定喷射式喷射式喷射器, 其范围上的拟议随机模型比一个相似的确定性模型更好地捕捉到大规模流体流体的结构。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员