Non-Rigid Structure-from-Motion (NRSfM) reconstructs a deformable 3D object from the correspondences established between monocular 2D images. Current NRSfM methods lack statistical robustness, which is the ability to cope with correspondence errors.This prevents one to use automatically established correspondences, which are prone to errors, thereby strongly limiting the scope of NRSfM. We propose a three-step automatic pipeline to solve NRSfM robustly by exploiting isometry. Step 1 computes the optical flow from correspondences, step 2 reconstructs each 3D point's normal vector using multiple reference images and integrates them to form surfaces with the best reference and step 3 rejects the 3D points that break isometry in their local neighborhood. Importantly, each step is designed to discard or flag erroneous correspondences. Our contributions include the robustification of optical flow by warp estimation, new fast analytic solutions to local normal reconstruction and their robustification, and a new scale-independent measure of 3D local isometric coherence. Experimental results show that our robust NRSfM method consistently outperforms existing methods on both synthetic and real datasets.
翻译:非数字化结构自移动( NRSSfM ) 重建一个从单望远镜 2D 图像之间建立的通信中建立的可变的 3D 对象。 目前 NRSfM 方法缺乏统计稳健性, 也就是应对通信错误的能力。 这防止了使用自动建立的通信, 容易出错, 从而严重限制 NRSfM 的范围。 我们建议了一条三步自动管道, 以便通过利用异度测量来强有力地解决 NRSfM 。 步骤1 计算通信的光学流, 步骤2 利用多个参考图像重建每个 3D 点的正常矢量, 并将它们整合到以最佳参考图像的形式形成表面, 步骤3 拒绝在本地附近断裂的 3D 点 。 重要的是, 每一步的设计都是丢弃错误的对应物。 我们的贡献包括通过扭曲估计对光学流进行稳健化, 新的快速分析解决方案用于本地的正常重建及其坚固性, 以及一个新的3D 本地测量一致性的尺度独立度测量度测量尺度。 实验结果显示, 我们强大的 NRSfM 方法一致地排除了现有合成方法。