While information delivery in industrial Internet of things demands reliability and latency guarantees, the freshness of the controller's available information, measured by the age of information (AoI), is paramount for high-performing industrial automation. The problem in this work is cast as a sensor's transmit power minimization subject to the peak-AoI requirement and a probabilistic constraint on queuing latency. We further characterize the tail behavior of the latency by a generalized Pareto distribution (GPD) for solving the power allocation problem through Lyapunov optimization. As each sensor utilizes its own data to locally train the GPD model, we incorporate federated learning and propose a local-model selection approach which accounts for correlation among the sensor's training data. Numerical results show the tradeoff between the transmit power, peak AoI, and delay's tail distribution. Furthermore, we verify the superiority of the proposed correlation-aware approach for selecting the local models in federated learning over an existing baseline.
翻译:在工业互联网上提供物品的信息要求可靠性和延缓度保障,但控制器可用信息的新程度(以信息年龄衡量)对于高性能工业自动化(AoI)至关重要。这项工作的问题被作为传感器传输电源最小化的传输方式而出现,但需符合最高-AoI的要求,并有潜伏性地限制排水延迟度。我们进一步用普遍Pareto分配(GPD)来描述延缓的尾部行为,通过Lyapunov优化解决电力分配问题。随着每个传感器利用自己的数据在当地培训GPD模型,我们采用了联合学习,并提出一种本地模式选择方法,其中说明传感器培训数据之间的相互关系。数字结果显示传输力、最高AoI和延迟尾部分布之间的利弊。此外,我们核查了拟议中的符合相关性的方法在选择地方模型时优劣于现有基线。