This paper studies the problem of federated learning (FL) in the absence of a trustworthy server/clients. In this setting, each client needs to ensure the privacy of its own data without relying on the server or other clients. We study local differential privacy (LDP) and provide tight upper and lower bounds that establish the minimax optimal rates (up to logarithms) for LDP convex/strongly convex federated stochastic optimization. Our rates match the optimal statistical rates in certain practical parameter regimes ("privacy for free"). Second, we develop a novel time-varying noisy SGD algorithm, leading to the first non-trivial LDP risk bounds for FL with non-i.i.d. clients. Third, we consider the special case where each client's loss function is empirical and develop an accelerated LDP FL algorithm to improve communication complexity compared to existing works. We also provide matching lower bounds, establishing the optimality of our algorithm for convex/strongly convex settings. Fourth, with a secure shuffler to anonymize client reports (but without a trusted server), our algorithm attains the optimal central DP rates for stochastic convex/strongly convex optimization, thereby achieving optimality in the local and central models simultaneously. Our upper bounds quantify the role of network communication reliability in performance.


翻译:本文研究在缺少可靠的服务器/客户端情况下的联结学习( FL) 问题。 在此环境下, 每个客户都需要确保自己数据的隐私, 而不依赖于服务器或其他客户。 我们研究本地差异隐私( LDP), 并提供紧紧的上下下界, 以建立本地DP convex/ 强调的联结同步优化的最小最大最佳比率( 直至对数) 。 我们的费率符合某些实用参数系统中的最佳统计率 ( “ 免费隐私” ) 。 第二, 我们开发了一个新的时间变化的噪音 SGD 算法, 导致首次非三重 LDP 与非i. id. 客户的 LDP 风险约束。 第三, 我们考虑每个客户的损失功能都是经验性的特例, 并开发一个加速的 LDP FL 算法, 以提高与现有工程相比的通信复杂性。 我们还提供匹配的下限, 建立我们配置/ 组合设置的最优化的算法 。 第四, 安全地平移到本地客户端平调化的客户端平整的客户端端端端端平整的, 实现我们最优化的客户端端平整的客户端平整的平整的平整的平整的平整的平整的平整的平整的平整的平整的平局。

0
下载
关闭预览

相关内容

【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月3日
Privacy-Preserving News Recommendation Model Learning
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员