Generating accurate SQL according to natural language questions (text-to-SQL) is a long-standing challenge due to the complexities involved in user question understanding, database schema comprehension, and SQL generation. Conventional text-to-SQL systems, comprising human engineering and deep neural networks, have made substantial progress. Subsequently, pre-trained language models (PLMs) have been developed and utilized for text-to-SQL tasks, achieving promising performance. As modern databases become more complex, the corresponding user questions also grow more challenging, leading PLMs with limited comprehension capabilities to produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods for PLMs, which, in turn, restricts the applications of PLM-based systems. Most recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding as the model scale remains increasing. Therefore, integrating the LLM-based implementation can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we present a comprehensive review of LLM-based text-to-SQL. Specifically, we propose a brief overview of the technical challenges and the evolutionary process of text-to-SQL. Then, we provide a detailed introduction to the datasets and metrics designed to evaluate text-to-SQL systems. After that, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we discuss the remaining challenges in this field and propose expectations for future research directions.
翻译:暂无翻译