The heavy-load legged robot has strong load carrying capacity and can adapt to various unstructured terrains. But the large weight results in higher requirements for motion stability and environmental perception ability. In order to utilize force sensing information to improve its motion performance, in this paper, we propose a finite state machine model for the swing leg in the static gait by imitating the movement of the elephant. Based on the presence or absence of additional terrain information, different trajectory planning strategies are provided for the swing leg to enhance the success rate of stepping and save energy. The experimental results on a novel quadruped robot show that our method has strong robustness and can enable heavy-load legged robots to pass through various complex terrains autonomously and smoothly.
翻译:暂无翻译