In computer vision, contrastive learning is the most advanced unsupervised learning framework. Yet most previous methods simply apply fixed composition of data augmentations to improve data efficiency, which ignores the changes in their optimal settings over training. Thus, the pre-determined parameters of augmentation operations cannot always fit well with an evolving network during the whole training period, which degrades the quality of the learned representations. In this work, we propose AdDA, which implements a closed-loop feedback structure to a generic contrastive learning network. AdDA works by allowing the network to adaptively adjust the augmentation compositions according to the real-time feedback. This online adjustment helps maintain the dynamic optimal composition and enables the network to acquire more generalizable representations with minimal computational overhead. AdDA achieves competitive results under the common linear protocol on ImageNet-100 classification (+1.11% on MoCo v2).
翻译:在计算机视觉领域,对比学习是最先进的无监督学习框架。然而,大多数以前的方法仅采用固定的数据增强组合来提高数据效率,忽略了其随训练而变化的最优设置。因此,增强操作的预定参数不能始终与演化中的网络很好地配合整个训练期间,这会降低学习表示的质量。在这项工作中,我们提出了AdDA,它实现了对泛化性能更强的对比学习网络的闭环反馈结构。AdDA通过允许网络根据实时反馈自适应地调整增强组合来工作。这种在线调整有助于维持动态最优组合,并使网络在最小计算开销下获得更具泛化能力的表示。在ImageNet-100分类的常见线性协议下,AdDA实现了竞争性的结果(MoCo v2上+1.11%)。