This paper concerns about the limiting distributions of change point estimators, in a high-dimensional linear regression time series context, where a regression object $(y_t, X_t) \in \mathbb{R} \times \mathbb{R}^p$ is observed at every time point $t \in \{1, \ldots, n\}$. At unknown time points, called change points, the regression coefficients change, with the jump sizes measured in $\ell_2$-norm. We provide limiting distributions of the change point estimators in the regimes where the minimal jump size vanishes and where it remains a constant. We allow for both the covariate and noise sequences to be temporally dependent, in the functional dependence framework, which is the first time seen in the change point inference literature. We show that a block-type long-run variance estimator is consistent under the functional dependence, which facilitates the practical implementation of our derived limiting distributions. We also present a few important byproducts of their own interest, including a novel variant of the dynamic programming algorithm to boost the computational efficiency, consistent change point localisation rates under functional dependence and a new Bernstein inequality for data possessing functional dependence.
翻译:本文关注在高维线性回归时间序列背景下变化点估计值的有限分布。 在这种背景下,每时点都会观察到一个回归对象$(y_t, X_t)\ in\mathbb{R}\time $(mathbb{R}\ times\ times $t\in +1,\ldots, n ⁇ } ⁇ p$。 在未知的时间点,叫做变化点,回归系数的变化,以$@ell_2$-norm衡量的跳幅大小。 在最小跳幅消失和保持恒定的系统中,我们提供了变化点估计值的有限分布。 在功能依赖框架内,我们允许共变和噪音序列都具有时间性依赖性,这是改变点文献中第一次看到的。 我们显示,区型长期差异估计值在功能依赖下是一致的,这有利于实际执行我们限制分布的推算。 我们还展示了他们自身兴趣的少数重要产品, 其中包括在伯尔尼功能性依赖性数据动态数据分析中, 将功能性稳定性数据依赖率的变量, 提升了伯尔尔顿性数据驱动的功能性数据驱动性分析。