In this paper, we study the offline change point localization problem in a sequence of dependent nonparametric random dot product graphs. To be specific, assume that at every time point, a network is generated from a nonparametric random dot product graph model \citep[see e.g.][]{athreya2017statistical}, where the latent positions are generated from unknown underlying distributions. The underlying distributions are piecewise constant in time and change at unknown locations, called change points. Most importantly, we allow for dependence among networks generated between two consecutive change points. This setting incorporates edge-dependence within networks and temporal dependence between networks, which is the most flexible setting in the published literature. To accomplish the task of consistently localizing change points, we propose a novel change point detection algorithm, consisting of two steps. First, we estimate the latent positions of the random dot product model, our theoretical result being a refined version of the state-of-the-art results, allowing the dimension of the latent positions to diverge. Subsequently, we construct a nonparametric version of the CUSUM statistic \citep[e.g.][]{Page1954, padilla2019optimal} that allows for temporal dependence. Consistent localization is proved theoretically and supported by extensive numerical experiments, which illustrate state-of-the-art performance. We also provide in depth discussion of possible extensions to give more understanding and insights.
翻译:在本文中,我们研究离线变化点本地化问题。 具体地说, 假设在每一个时间点上, 网络是由非参数随机点产品图形模型\citep[例如见][ {athreya2017statistic}产生的, 潜伏位置来自未知的底部分布。 基础分布在时间上是小数不变的, 在未知地点, 被称为变化点 变化点 。 最重要的是, 我们允许在连续两个变化点之间生成的网络之间产生依赖性。 这一设置包括网络的边缘依赖性和网络之间的时间依赖性, 这是出版文献中最灵活的设置。 为了完成持续定位变化点的任务, 我们提出由两个步骤组成的新的改变点检测算法。 首先, 我们估计随机点产品模型的潜在位置, 我们的理论结果是对最新结果的精细版本, 使得潜在位置的层面可以进行差异化。 随后, 我们构建了一个非参数版本的CUM统计数- 和网络之间的时间依赖性, 这是所出版文献中最灵活的设置。 实现持续定位的深度的精确性实验[19], 也支持了直观的直观性实验。 。 。 提供直观的直观的直观的直观的直观的直观 。 。