The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense. Specifically, we observe an undirected and unweighted graph on $n$ nodes. Under the null hypothesis, the graph is a realization of an Erd\H{o}s-R\'{e}nyi graph with edge probability (or, density) $q$. Under the alternative, there is a subgraph on $k$ vertices with edge probability $p>q$. The statistical as well as the computational barriers of this problem are well-understood for a wide range of the edge parameters $p$ and $q$. In this paper, we consider a natural variant of the above problem, where one can only observe a small part of the graph using adaptive edge queries. For this model, we determine the number of queries necessary and sufficient for detecting the presence of the planted subgraph. Specifically, we show that any (possibly randomized) algorithm must make $\mathsf{Q} = \Omega(\frac{n^2}{k^2\chi^4(p||q)}\log^2n)$ adaptive queries (on expectation) to the adjacency matrix of the graph to detect the planted subgraph with probability more than $1/2$, where $\chi^2(p||q)$ is the Chi-Square distance. On the other hand, we devise a quasi-polynomial-time algorithm that finds the planted subgraph with high probability by making $\mathsf{Q} = O(\frac{n^2}{k^2\chi^4(p||q)}\log^2n)$ adaptive queries. We then propose a polynomial-time algorithm which is able to detect the planted subgraph using $\mathsf{Q} = O(\frac{n^4}{k^4\chi^2(p||q)}\log n)$ queries. We conjecture that in the leftover regime, where $\frac{n^2}{k^2}\ll\mathsf{Q}\ll \frac{n^4}{k^4}$, no polynomial-time algorithms exist; we give an evidence for this hypothesis using the planted clique conjecture. Our results resolve three questions posed in \cite{racz2020finding}, where the special case of adaptive detection and recovery of a planted clique was considered.


翻译:种植密度最深的子图检测问题是指在给定的( random) 图形中检测 $2 (美元) 是否是一个异常稠密的子图 。 具体地说, 我们观察的是 $n 节点上的非方向和非加权的图形 。 在无效假设下, 该图是一个带有边缘概率( 或, 密度) 的 Erd\ H{\\\ { e} 尼基图的实现。 在另一个选项下, 有一个关于 $k$ 的垂直值的子图, 其边缘概率 $2 (美元) 。 这个问题的统计和计算障碍对于一系列的边缘参数 $ p 4 和 美元 。 在本文中, 我们考虑的是上述问题的自然变量, 其中只能使用适应性边缘查询来观察小部分 。 对于这个模型, 我们确定必要的查询次数, 并足够用来检测配置子图的存在 。 具体地说, 我们用任何( 可能随机的) 算算算的算算方法, $math= = 美元 = = = = 美元 = 美元 = = iqn iqxxxxx ad ad 。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货51页PPT】深度学习理论理解探索
专知会员服务
62+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Edge-Vertex Dominating Set in Unit Disk Graphs
Arxiv
0+阅读 · 2021年11月26日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员