We propose a new representation of $k$-partite, $k$-uniform hypergraphs (i.e. a hypergraph with a partition of vertices into $k$ parts such that each hyperedge contains exactly one vertex of each type; we call them $k$-hypergraphs for short) by a finite set $P$ of points in $\mathbb{R}^d$ and a parameter $\ell\leq d-1$. Each point in $P$ is covered by $k={d\choose\ell}$ many axis-aligned affine $\ell$-dimensional subspaces of $\mathbb{R}^d$, which we call $\ell$-subspaces for brevity. We interpret each point in $P$ as a hyperedge that contains each of the covering $\ell$-subspaces as a vertex. The class of $(d,\ell)$-hypergraphs is the class of $k$-hypergraphs that can be represented in this way, where $k={d\choose\ell}$. The resulting classes of hypergraphs are fairly rich: Every $k$-hypergraph is a $(k,k-1)$-hypergraph. On the other hand, $(d,\ell)$-hypergraphs form a proper subclass of the class of all $d\choose\ell$-hypergraphs for $\ell<d-1$. In this paper we give a natural structural characterization of $(d,\ell)$-hypergraphs based on vertex cuts. This characterization leads to a polynomial-time recognition algorithm that decides for a given $d\choose\ell$-hypergraph whether or not it is a $(d,\ell)$-hypergraph and that computes a representation if existing. We assume that the dimension $d$ is constant and that the partitioning of the vertex set is prescribed.
翻译:我们提出一个新的代表值,即每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元,每平方美元。