Phase retrieval is in general a non-convex and non-linear task and the corresponding algorithms struggle with the issue of local minima. We consider the case where the measurement samples within typically very small and disconnected subsets are coherently linked to each other - which is a reasonable assumption for our objective of antenna measurements. Two classes of measurement setups are discussed which can provide this kind of extra information: multi-probe systems and holographic measurements with multiple reference signals. We propose several formulations of the corresponding phase retrieval problem. The simplest of these formulations poses a linear system of equations similar to an eigenvalue problem where a unique non-trivial null-space vector needs to be found. Accurate phase reconstruction for partially coherent observations is, thus, possible by a reliable solution process and with judgment of the solution quality. Under ideal, noise-free conditions, the required sampling density is less than two times the number of unknowns. Noise and other observation errors increase this value slightly. Simulations for Gaussian random matrices and for antenna measurement scenarios demonstrate that reliable phase reconstruction is possible with the presented approach.


翻译:阶段检索一般是非隐形和非线性任务,对应的算法与当地微型问题相对应。我们考虑的情况是,通常非常小和不相连接的子集中的测量样品相互连贯地连接,这是我们天线测量目标的合理假设。讨论的测量组别分为两类,可以提供这种额外信息:多谱系统和带有多个参考信号的全息测量。我们建议了相应的阶段检索问题的若干配方。这些配方最简单的配方构成一个线性方程系统,类似于需要找到独特的非三角性无空间矢量的等式问题。因此,通过可靠的解决方案进程和对溶性质量的判断,可以对部分一致的观测进行准确的阶段重建。在理想情况下,无噪音条件下,所需的取样密度比未知数少两倍。噪音和其他观测错误会增加这一数值。高斯随机矩阵和天线测量假设情景的模拟显示,可以按所述方法进行可靠的阶段重建。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月25日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
6+阅读 · 2017年12月7日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
AAAI2020 图相关论文集
图与推荐
10+阅读 · 2020年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员