We present practical aspects of implementing a pseudo posterior synthesizer for microdata dissemination under a new re-weighting strategy for utility maximization. Our re-weighting strategy applies to any vector-weighting approach under which a vector of observation-indexed weight are used to downweight likelihood contributions for high disclosure risk records. We demonstrate our method on two different vector-weighted schemes that target high-risk records by exponentiating each of their likelihood contributions with a record-indexed weight, $\alpha_i \in [0,1]$ for record $i \in (1,\ldots,n)$. We compute the overall Lipschitz bound, $\Delta_{\bm{\alpha},\mathbf{x}}$, for the database $\mathbf{x}$, under each vector-weighted scheme where a local $\epsilon_{x} = 2\Delta_{\bm{\alpha},\mathbf{x}}$. Our new method for constructing record-indexed downeighting maximizes the data utility under any privacy budget for the vector-weighted synthesizers by adjusting the by-record weights, $(\alpha_{i})_{i = 1}^{n}$, such that their individual Lipschitz bounds, $\Delta_{\bm{\alpha},x_{i}}$, approach the bound for the entire database, $\Delta_{\bm{\alpha},\mathbf{x}}$. We illustrate our methods using simulated count data with and without over-dispersion-induced skewness and compare the results to a scalar-weighted synthesizer under the Exponential Mechanism (EM). We demonstrate our pDP result in a simulation study and our methods on a sample of the Survey of Doctorate Recipients.


翻译:我们展示了两种不同的矢量加权计划的方法,即以创纪录的重量计其可能贡献值, $\alpha_i\in [0,1,1,1,3,2,2,2,2,3,2,3,3,3,3,2,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,4,3,4,4,3,4,4,4,4,6,6,6,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,7,7,7,7,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

0
下载
关闭预览

相关内容

专知会员服务
113+阅读 · 2020年10月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
5+阅读 · 2019年3月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
5+阅读 · 2019年3月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员