Gaussian covariance graph model is a popular model in revealing underlying dependency structures among random variables. A Bayesian approach to the estimation of covariance structures uses priors that force zeros on some off-diagonal entries of covariance matrices and put a positive definite constraint on matrices. In this paper, we consider a spike and slab prior on off-diagonal entries, which uses a mixture of point-mass and normal distribution. The point-mass naturally introduces sparsity to covariance structures so that the resulting posterior from this prior renders covariance structure learning. Under this prior, we calculate posterior model probabilities of covariance structures using Laplace approximation. We show that the error due to Laplace approximation becomes asymptotically marginal at some rate depending on the posterior convergence rate of covariance matrix under the Frobenius norm. With the approximated posterior model probabilities, we propose a new framework for estimating a covariance structure. Since the Laplace approximation is done around the mode of conditional posterior of covariance matrix, which cannot be obtained in the closed form, we propose a block coordinate descent algorithm to find the mode and show that the covariance matrix can be estimated using this algorithm once the structure is chosen. Through a simulation study based on five numerical models, we show that the proposed method outperforms graphical lasso and sample covariance matrix in terms of root mean squared error, max norm, spectral norm, specificity, and sensitivity. Also, the advantage of the proposed method is demonstrated in terms of accuracy compared to our competitors when it is applied to linear discriminant analysis (LDA) classification to breast cancer diagnostic dataset.
翻译:在随机变量之间显示基本依赖性结构的流行模型。 Bayesian 用于估计常态结构的模型使用先验方法,在共变矩阵的一些非对角条目上强制零,对矩阵施加积极的明确限制。在本文中,我们考虑在非对角条目上先加点和正常分布的混合值。点质量自然引入常态结构的宽度,以便由此生成的顺差性变异性使常变性结构学习。在此前一种情况下,我们使用 Laplace 基调矩阵的某些非对角条目上加零,对矩阵进行积极的限制。在Frobenius 规范下,我们考虑在离差值矩阵上加点和正常分布的混合率前加点。根据近似后端模型的概率,我们建议一个新的框架来估计共变异性结构。在使用Laplior 模型的固定后变异性规则结构中,我们用Laplioral 的正值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值