Most solved dynamic structural macrofinance models are non-linear and/or non-Gaussian state-space models with high-dimensional and complex structures. We propose an annealed controlled sequential Monte Carlo method that delivers numerically stable and low variance estimators of the likelihood function. The method relies on an annealing procedure to gradually introduce information from observations and constructs globally optimal proposal distributions by solving associated optimal control problems that yield zero variance likelihood estimators. To perform parameter inference, we develop a new adaptive SMC$^2$ algorithm that employs likelihood estimators from annealed controlled sequential Monte Carlo. We provide a theoretical stability analysis that elucidates the advantages of our methodology and asymptotic results concerning the consistency and convergence rates of our SMC$^2$ estimators. We illustrate the strengths of our proposed methodology by estimating two popular macrofinance models: a non-linear new Keynesian dynamic stochastic general equilibrium model and a non-linear non-Gaussian consumption-based long-run risk model.
翻译:多数已解决的动态宏观金融结构模型是非线性和/或非加西州空间模型,具有高维和复杂的结构。我们建议了一种无源控制连续的蒙特卡洛连续控制方法,该方法提供数值稳定且低差异的概率估计值。该方法依赖一种无源程序,通过解决相关的最佳控制问题,产生零差异概率估计器,逐步引入观测信息,构建全球最佳建议分布。为了进行参数推断,我们开发了一种新的适应性SMC$2$的SMC$2的算法,使用从无源控制连续的蒙特卡洛中测出的可能性估计器。我们提供了一种理论稳定性分析,阐明了我们方法的优势,以及我们有关SMC$2美元估算器一致性和趋同率的无源结果。我们通过估计两种流行的宏观金融模型来说明我们拟议方法的优点:一种非线性的新Keynes动态随机一般平衡模型,以及一种非线性非线性非基于消费的长期风险模型。