Percentiles and more generally, quantiles are commonly used in various contexts to summarize data. For most distributions, there is exactly one quantile that is unbiased. For distributions like the Gaussian that have the same mean and median, that becomes the medians. There are different ways to estimate quantiles from finite samples described in the literature and implemented in statistics packages. It is possible to leverage the memory-less property of the exponential distribution and design high quality estimators that are unbiased and have low variance and mean squared errors. Naturally, these estimators out-perform the ones in statistical packages when the underlying distribution is exponential. But, they also happen to generalize well when that assumption is violated.
翻译:百分率和更一般地说,四分位数通常在不同背景下用于总结数据。对于大多数分布,完全只有一个不偏差的四分位数。对于像高森这样的分布,其平均值和中位数相同,即成为中位数。从文献描述的有限样本中估算四分位数的方法不同,并在统计软件包中实施。可以利用指数分布的无记忆特性,设计出高品质的不偏向性、差异低和平均正方差错误的估测器。自然,这些估测器在统计包中比统计包中的分布要快,而基本分布指数是指数指数的。但是,当假设被违反时,它们也会巧妙地普遍化。