Lossy Image compression is necessary for efficient storage and transfer of data. Typically the trade-off between bit-rate and quality determines the optimal compression level. This makes the image quality metric an integral part of any imaging system. While the existing full-reference metrics such as PSNR and SSIM may be less sensitive to perceptual quality, the recently introduced learning methods may fail to generalize to unseen data. In this paper we propose the largest image compression quality dataset to date with human perceptual preferences, enabling the use of deep learning, and we develop a full reference perceptual quality assessment metric for lossy image compression that outperforms the existing state-of-the-art methods. We show that the proposed model can effectively learn from thousands of examples available in the new dataset, and consequently it generalizes better to other unseen datasets of human perceptual preference.
翻译:有效存储和传输数据需要失传图像压缩。 通常, 比特率和质量之间的权衡决定了最佳压缩水平。 这使得图像质量度量成为任何成像系统的组成部分。 虽然现有的全参考度量, 如PSNR和SSIM, 对感知质量可能不太敏感, 但最近引入的学习方法可能无法概括到不可见的数据 。 在本文中, 我们提出迄今为止最大的图像压缩质量数据, 以人类的感知偏好为基础, 使得能够使用深层次的学习, 并且我们开发出一个完整的参考感官质量评估标准, 以测量超过现有最新方法的失传图像压缩。 我们显示, 拟议的模型可以有效地从新数据集中现有的数千个实例中学习, 从而将人类感知偏好的其他看不见数据集概括到更好。